Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(1): 103705, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35059609

RESUMO

In the cerebellar cortex, heterogeneous populations of Purkinje cells (PCs), classified into zebrin (aldolase C)-positive (Z+) and -negative (Z-) types, are arranged into separate longitudinal zones. They have different topographic neuronal connections and show different patterns of activity in behavior tasks. However, whether the zebrin type of PCs directly links with the physiological properties of the PC has not been well clarified. Therefore, we applied in vitro whole-cell patch-clamp recording in Z+ and Z- PCs in vermal and hemispheric neighboring zebrin zones in zebrin-visualized mice. Intrinsic excitability is significantly higher in Z- PCs than in Z+ PCs. Furthermore, intrinsic plasticity and synaptic long-term potentiation are enhanced more in Z- PCs than in Z+ PCs. The difference was mediated by different modulation of SK channel activities between Z+ and Z- PCs. The results indicate that cellular physiology differentially tunes to the functional compartmentalization of heterogeneous PCs.

2.
RSC Adv ; 11(63): 39838-39847, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-35494158

RESUMO

The floods in the Vietnamese Mekong Delta have long caused a shortage of clean water supply, which has a significant impact on the indigenous people in the region. We have conducted a preliminary survey of the water quality of the Hau Giang River (one of the two main branches of the Mekong River) before, during, and after the flood season. The obtained results demonstrated that the water in the Hau Giang River was highly turbid and contaminated with a large number of harmful microorganisms. Thus, in this study, a simple filter system based on silver nanoparticles coated onto activated carbon derived from rice husk (AgNPs@AC) has been proposed for treating floodwater from the Hau Giang River. The optimal conditions for AgNPs@AC preparation were established. The prepared AgNPs@AC was then characterized using various surface analyses such as SEM, TEM, XRD, BET, FTIR, and DLS. The initial floodwater source would be pre-treated with polyaluminum chloride using the coagulation-sedimentation method to remove the suspended solids before being discharged into the filtration column containing AgNPs@AC. The results showed that the filter system based on AgNPs@AC performed well in removing turbidity, dissolved solids, suspended solids, color, and bacteria from the floodwater. In addition, it was determined that the filter column with a 30 mm thick AgNPs@AC layer could continuously process 1300 m3 of the floodwater and had a service life of more than two months. The findings of this study not only added to our understanding of the floodwater treatment capacity of activated carbon coated nanoparticles, but they also provided valuable information for water treatment plants along the Hau Giang River, aquatic ecosystem researchers, and public health researchers.

3.
Neuroscience ; 462: 122-140, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717297

RESUMO

Heterogeneity of Purkinje cells (PCs) that are arranged into discrete longitudinally-striped compartments in the cerebellar cortex is related to the timing of PC generation. To understand the cerebellar compartmental organization, we mapped the PC birthdate (or differentiation timing) in the entire cerebellar cortex. We used the birthdate-tagging system of Neurog2-CreER (G2A) mice hybridized with the AldocV strain which visualizes the zebrin (aldolase C) longitudinal striped pattern. The birthdate-specific distribution pattern of PCs was arranged into longitudinally-oriented stripes consistently throughout almost all lobules except for the nodulus, paraflocculus, and flocculus, in which distinct stripes were observed. Boundaries of the birthdate stripes coincided with the boundary of zebrin stripes or located in the middle of a zebrin stripe. Each birthdate stripe contained PCs born in a particular period between embryonic day (E) 10.0 and E 13.5. In the vermis, PCs were chronologically distributed from lateral to medial stripes. In the paravermis, PCs of early birthdates were distributed in the long lateral zebrin-positive stripe (stripe 4+//5+) and the medially neighboring narrow zebrin-negative substripe (3d-//e2-), while PCs of late birthdates were distributed in the rest of all paravermal areas. In the hemisphere, PCs of early and late birthdates were intermingled in the majority of areas. The results indicate that the birthdate of a PC is a partial determinant for the zebrin compartment in which it is located. However, the correlation between the PC birthdate and the zebrin compartmentalization is complex and distinct among the vermis, paravermis, hemisphere, nodulus, and flocculus.


Assuntos
Vermis Cerebelar , Células de Purkinje , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Córtex Cerebelar/metabolismo , Cerebelo/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/metabolismo
4.
eNeuro ; 7(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33055198

RESUMO

One of the notable characteristics of the functional localization in the cerebellar cortex is the dual representation of the body (somatotopy) on its anterior-posterior axis. This somatotopy is conspicuous in the C1/C3 module, which is demarcated as the multiple zebrin-negative and weekly-positive stripes in dual paravermal areas in anterior and posterior lobules within the cerebellar compartments. In this report, we describe the early formation process of the cerebellar compartmentalization, particularly in the C1/C3 module. As developing PCs guide formation of the module-specific proper neuronal circuits in the cerebellum, we hypothesized that the rearrangement of embryonic Purkinje cell (PC) clusters shapes the adult cerebellar compartmentalization. By identifying PC clusters with immunostaining of marker molecules and genetical birthdate-tagging with Neurog2-CreER (G2A) mice, we clarified the three-dimensional spatial organization of the PC clusters and tracked the lineage relationships among the PC clusters from embryonic day 14.5 (E14.5) till E17.5. The number of recognized clusters increased from 9 at E14.5 to 37 at E17.5. Among E14.5 PC clusters, the c-l (central-lateral) cluster which lacked E10.5-born PCs divided into six c-l lineage clusters. They separately migrated underneath other clusters and positioned far apart mediolaterally as well as rostrocaudally by E17.5. They were eventually transformed mainly into multiple separate zebrin-negative and weakly-positive stripes, which together configured the adult C1/C3 module, in the anterior and posterior paravermal lobules. The results indicate that the spatial rearrangement of embryonic PC clusters is involved in forming the dual somatotopic areas in the adult mouse paravermal cerebellar cortex.


Assuntos
Cerebelo , Células de Purkinje , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cerebelo/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Células de Purkinje/metabolismo
5.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842268

RESUMO

Software-Defined Networking (SDN) has opened a promising and potential approach for future networks, which mostly requires the low-level configuration to implement different controls. With the high advantages of SDN by decomposing the network control plane from the data plane, SDN has become a crucial platform to implement Internet of Things (IoT) services. However, a static SDN controller placement cannot obtain an efficient solution in distributed and dynamic IoT networks. In this paper, we investigate an optimization framework under a well-known theory, namely submodularity optimization, to formulate and address different aspects of the controller placement problem in a distributed network, specifically in an IoT scenario. Concretely, we develop a framework that deals with a series of controller placement problems from basic to complicated use cases. Corresponding to each use case, we provide discussion and a heuristic algorithm based on the submodularity concept. Finally, we present extensive simulations conducted on our framework. The simulation results show that our proposed algorithms can outperform considered baseline methods in terms of execution time, the number of controllers, and network latency.

6.
Front Cell Neurosci ; 12: 513, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30670950

RESUMO

Heterogeneous populations of cerebellar Purkinje cells (PCs) are arranged into separate longitudinal stripes, which have different topographic afferent and efferent axonal connections presumably involved in different functions, and also show different electrophysiological properties in firing pattern and synaptic plasticity. However, whether the differences in molecular expression that define heterogeneous PC populations affect their electrophysiological properties has not been much clarified. Since the expression pattern of many of such molecules, including glutamate transporter EAAT4, replicates that of aldolase C or zebrin II, we recorded from PCs of different "zebrin types" (zebrin-positive = aldolase C-positive = Z+; and Z-) in identified neighboring stripes in vermal lobule VIII, in which Z+ and Z- stripes occupy similar widths, in the Aldoc-Venus mouse cerebellar slice preparation. Regarding basic cellular electrophysiological properties, no significant differences were observed in input resistance or in occurrence probability of types of firing patterns between Z+ and Z- PCs. However, the firing frequency of the tonic firing type was higher in Z- PCs than in Z+ PCs. In the case of parallel fiber (PF)-PC synaptic transmission, no significant differences were observed between Z+ and Z- PCs in interval dependency of paired pulse facilitation or in time course of synaptic current measured without or with the blocker of glutamate receptor desensitization. These results indicate that different expression levels of the molecules that are associated with the zebrin type may affect the intrinsic firing property of PCs but not directly affect the basic electrophysiological properties of PF-PC synaptic transmission significantly in lobule VIII. The results suggest that the zebrin types of PCs in lobule VIII is linked with some intrinsic electrophysiological neuronal characteristics which affect the firing frequency of PCs. However, the results also suggest that the molecular expression differences linked with zebrin types of PCs does not much affect basic electrophysiological properties of PF-PC synaptic transmission in a physiological condition in lobule VIII.

7.
J Comp Neurol ; 525(14): 2971-2990, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28542916

RESUMO

Transversely oriented lobules and longitudinally arrayed stripes of Purkinje cell subsets subdivide the cerebellar cortex into multiple compartments that are involved in diverse functions. In the mammalian cerebellum, anterior, and posterior lobules, which are involved in somatosensorimotor function, show an alternation of aldolase C (zebrin II) -positive and -negative stripes, whereas the central lobules (lobules VIb-VII and crus I), which are implicated in nonmotor functions, show a laterally expanded arrangement solely of aldolase C-positive stripes. To understand the developmental process of this compartmental pattern, we identified groups of Purkinje cell subsets in the entire mouse cerebellum at embryonic day (E) 14.5 by staining Purkinje cell subset markers. We then tracked four major domains of Protocadherin 10 (Pcdh10)-positive Purkinje cell subsets (medial, dorsal, central, and mid-lateral subsets), which were clearly demarcated during E14.5-17.5. These domains of Purkinje cell subsets shifted predominantly in the longitudinal direction to be positioned in the anterior and posterior lobules. However, a particular portion of the medial and mid-lateral domains, and the whole of the central domain shift in the lateral direction to be positioned in the central lobules. The results indicate that while the longitudinal shift of domains of Purkinje cell subsets forms the longitudinally striped compartments in the anterior and posterior cerebellum, the lateral shift of particular domains of Purkinje cell subsets underlies the laterally expanded arrangement of stripes in central lobules. Thus, the rearrangement of Purkinje cell subsets in the embryonic cerebellum is critically related to the compartmental organization in the mammalian cerebellum.


Assuntos
Movimento Celular , Córtex Cerebelar/citologia , Córtex Cerebelar/embriologia , Células de Purkinje/citologia , Animais , Caderinas/genética , Caderinas/metabolismo , Córtex Cerebelar/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Imageamento Tridimensional , Imuno-Histoquímica , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Protocaderinas , Células de Purkinje/metabolismo , Receptor EphA4/metabolismo , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...